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Experimentally determined eigenvalue velocities in a Sinai billiard were used to establish a relation be-
tween the Pechukas-Yukawa level dynamics and periodic orbit theory. The first one explains easily the
observed Maxwellian velocity distributions, whereas the second one accounts for velocity correlations
between distant levels, and a conspicuous increase of the averaged velocities with energy.

PACS number(s): 05.45.+b

In investigations of the quantum-mechanical spectra of
classically chaotic systems one can identify three main
approaches: random matrix theory, the Coulomb gas
analogy of level motion, and periodic orbit theory. The
first concentrates on statistical properties of the fluctua-
tions of eigenvalues around some mean and predicts, in
analogy to observations in nuclear physics, universal
behavior depending only on whether the Hamiltonian is
real symmetric, complex Hermitian or symplectic [1].
The second approach studies the motion of eigenvalues
under parameter change [2,3]. Equations of motion can
be derived reminiscent of those for a one-dimensional
Coulomb gas, once the eigenvalues are identified with the
positions of the particles. “Random” behavior can now
be studied using methods from statistical physics. The
third approach makes use of the relation between quan-
tum spectra and classical periodic orbits as embodied in
semiclassical trace formulas [4,5]. There is some hope
that it can provide the extension of WKB quantization to
chaotic systems, but perhaps more importantly it predicts
correlations in eigenvalues due to classical periodic
orbits [6].

The relation of the latter two theories to random ma-
trix theory has been clarified to a considerable extent in
Refs. [1-3,7]. Here we focus on the relation between
periodic orbit theory and level dynamics. The predic-
tions of the theory are then tested experimentally using
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eigenfrequency spectra of billiard-shaped microwave
resonators [8,9] of varying length. In particular, we will
use periodic orbit theory to explain an unexpected linear
increase of eigenvalue velocities with energy.

We begin with a brief summary of the Pechukas-
Yukawa model [2,3] of level dynamics. The original
theory assumes a Hamiltonian with a linear parameter
dependence and is therefore not directly applicable to bil-
liards, since here the Hamiltonian H = —#2/(2m)A is
fixed, and possible parameter dependences enter only
through the change of the shape. It is always possible,
however, to transform a simply connected region to a
standard shape, e.g., the unit circle, by means of a confor-
mal mapping [10]. By this the parameter dependence is
shifted from the boundary conditions to the Hamiltonian,

H(\M)=g(MH , (1)

where g (1) is the functional determinant of the mapping.
For sufficiently small changes of the parameter in some
interval AE[A(,Ay+AA] one can expand to first order in
A, arriving at

HM=Hy+(A—A)V , (2)

where Hy,=H(A,) and V=8H/allk=lo. Let x,(A) be

the eigenvalues, [n(A)) the associated eigenvectors,
Vomn={n(A)|VIm(A)) the matrix elements, and
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Sum =1%p =% |Vym- One can derive equations of motion
for these quantities [2,3], of which we will cite for later
reference the one for the velocities only,
ox,
= @
The equations of motion have an infinite number of con-
servation laws, the simplest of which are
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The first one is reminiscent of the total energy of a one-
dimensional gas of particles at positions x, with veloci-
ties %,, interacting via a pairwise repulsive (distance) 2
potential, the strength being given by |f,,, |2. Within sta-
tistical mechanics one would describe a subset of levels by
a canonical distribution in phase space,

PX %0, [ um )=% exp(—uE —0Q), (5)
with Lagrange parameters p and o, normalized by the
canonical partition sum Z.

It should be noted that E and Q are no longer con-
stants of motion if higher-order terms in A are included in
Eq. (2). Observing that E can be written as the trace over
1y, one finds

2
JoH
E(}»)=%tl‘ a
dH 3’H
+(A—AQtr oA an + , (6)

where all derivatives are taken at A=A, (a similar caleu-
lation can be performed for Q). If, however, already a
small variation in A leads to a new arrangement of the
levels (in the experiment a relative change in the billiard
length of 102 was sufficient to produce completely new
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FIG. 1. Part of the microwave spectrum of a quartered Sinai
billiard as a function of length. The overall decrease of the
eigenfrequencies with increasing length reflects the increase of
the density of states with area. The peculiar solitonlike struc-
tures [15] in the middle appear every 0.75 GHz and are associat-
ed with the dominating bouncing ball orbit labeled 1 in Fig. 3
(compare also Fig. 4 of Ref. [8]).

spectra, see Fig. 1) then one can expect that the phase-
space density relaxes quickly to the canonical one given
by Eq. (5). A similar reasoning can probably be applied
to other Hamiltonians nonlinear in A (as studied, e.g., in
Refs. [11,12]).

Gutzwiller’s periodic orbit theory in its basic formula-
tion relates modulations in the density of states
plk)=3,6(k —k,) to periodic orbits [4]. For billiards,
one finds for the density of states

p(k)=polk)+ 3 L,w, exp(iL k) , (7)
)

where k is the wave number (k=VE, assuming
#2/2m =1), p labels periodic orbits including multiple
traversals, L, is the total length of the orbit, w, depends
on the Maslov index and the stability of the orbit. The
smooth term is given by the Weyl formula,

A L
polk) 27,_k yp (8)
with A the area of the billiard and L its circumference
[13]. The advantage of considering the density as a func-
tion of wave number rather than energy is that the
periodic orbit content of the eigenvalue distribution can
be obtained by a simple Fourier transform.

To connect periodic orbit theory to level dynamics,
note that the velocity of an eigenvalue x,, is given by the
diagonal matrix element V,, [see Eq. (3)]. The velocities
of eigenvalues x, are related to those of the wave num-
bers k, by V,,=x,=2k,k,. The density of eigenvalue
velocities is given by

p (k)= V,,8(k —k,) . ©)

To obtain a periodic orbit expression for p,(k) one could
apply the results of Ref. [S] for expressions of the form
3>.{n|A|ln)8(k —k,), if only the operator correspond-
ing to the velocities was known. Here, we can proceed
differently, starting from the integrated density of states,

N(k)=3 6k —k,) .
Its derivative with respect to the parameter A in the

Hamiltonian gives, up to a factor, the density of eigenval-
ues velocities,

L
2kpv

n (k).

AN ok,

—(k)=— 8k —k,)=—

ax( ) zn‘, ( n)
A periodic orbit expression for the integrated density of
states can be obtained by integration of Eq. (7). Assum-
ing that the variations of the phase factors with A are
much larger than the variations of the amplitudes, one
gets

po(k)=—2k*3 L,w, exp(iL k) , (10)
»

which shows that the density of velocities should increase
linearly with energy E =k2.

To test this, we have performed experiments on a reso-
nator shaped as a quartered, i.e., desymmetrized, Sinai
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FIG. 2. (a) Absolute values |v,| of the eigenvalue velocities 0.0 L— 1 N
for a quartered Sinai billiard (points) and {v?2)'/? averaged over -4 -2 0 2 -2 0 2 4

20 neighbored eigenvalues (continuous line). (b) Experimental
density of states {p(x)) averaged over 20 neighboring eigenval-
ues. The spectra are normalized to a constant density of 1.

billiard with dimensions ¢ =460-480 mm, b =200 mm,
r =70 mm. The height of the resonator was d =8 mm.
For frequencies v <c¢ /(2d)=18.7 GHz the billiard can be
considered as two-dimensional and the time-independent
Schrodinger equation and electromagnetic wave equation
for the electric-field strength are completely equivalent
[8]. The length of the billiard was varied in steps between
0.2 and 1 mm, and some 20 spectra each containing about
700 eigenvalues were obtained in a very short time. Fig-
ure 1 shows an example. Parts of the spectrum are lost
for two reasons: (i) some eigenvalues disappear tem-
porarily because of the passing of a nodal line through
the position of the coupling wire [9], and (ii) eigenfre-
quencies can no longer be separated if their distance is
smaller than the linewidth of several MHz. Since all ei-
genvalues were registered as a function of length, all
missing eigenvalues could be recovered by interpolation,
thus reducing the loss to zero within the limits of error.
Because of the Weyl formula (8) the mean density of
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FIG. 3. (a) Absolute value of the Fourier transform

p.(h= f(2k2)_1p,,(k)exp(—ik1)dk of the eigenvalue velocities
(a =478 mm, b =200 mm, r =70 mm). (b) Absolute value of
the Fourier transform p(/)= f plklexp(—ikl)dk of the density
of states. The resonances both of 5(I) and g, (/) can be associat-
ed with periodic orbits (see inset).

normalized velocity Vv

FIG. 4. Distribution of normalized velocities D, =v, /{v?)!/?
in the frequency ranges (a) 0.5-8.0 GHz, (b) 8.0-10.5 GHz, (c)
10.5-12.5 GHz, (d) 12.5-15.0 GHz, (e) 0.5-15.0 GHz, (f
0.5-15.0 GHz. In (a)-(e) all eigenfrequencies within the respec-
tive ranges were considered; in (f) only eigenfrequencies not
influenced by the bouncing ball were taken. The solid line is a
Gaussian.

states py(k) increases in the leading term linearly with k
and is proportional to the billiard area. This leads to the
overall decrease of eigenfrequencies with length. For fur-
ther discussion the spectra are unfolded to a constant
mean density of states using Eq. (8). Figure 2(a) shows
the absolute value of the velocities v, =x, of the eigen-
values as well as {v2)!/?, averaged over 20 eigenvalues.
One observes periodic modulations superimposed on a
linear increase. The oscillations of {v2)!/? are correlated
with corresponding oscillations in the density of states, as
can be seen in Fig. 2(b). The periodic modulations reflect
the presence of periodic orbits as was discussed in Ref.
[14].

The contribution of the different orbits can be project-
ed out of p(k) and (2k?)"'p, (k) by a Fourier transforma-
tion. The result is shown in Figs. 3(a) and 3(b). The most
prominent resonances belong to the bouncing ball and its
higher harmonics, but contributions of several other or-
bits are also clearly seen. The ratio of amplitudes of cor-
respondings peaks in Figs. 3(a) and 3(b), respectively,
should be equal to —L,/L, [see Egs. (7) and (10)]. We
checked this qualitatively for the resonances marked by
numbers in Fig. 3. In all cases the ratio of the two ampli-
tudes showed up to be real, up to phase deviations of the
order of +0.02 from O or 7. The sign of the ratio indicat-
ed correctly whether the length of the orbit in question
increases or decreases with billiard length. It should be
noted that the unfolded spectra correspond to billiards of
constant area, i.e., an increase of the length is compensat-
ed by a corresponding decrease of the width. Therefore
the lengths of orbits 1 and 4 decrease with billiard length
(see inset of Fig. 3), whereas the length of orbit 2 in-
creases. The length of orbit 3 is nearly independent of
the billiard length. This explains easily the nonexistence
of the corresponding peak at 1.25 m in Fig. 3(a), while it
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is clearly seen in Fig. 3(b). The peak corresponding to the
first harmonic of orbit 3, however, is present in both
Fourier transforms, suggesting that for a quantitative
analysis the parameter dependences of the amplitudes,
neglected in the derivation of Eq. (10), have to be taken
into account also.

The above findings show that eigenvalue dynamics in-
creases with energy, even if the energies are unfolded to a
constant mean spacing. The situation is different, e.g.,
for periodically kicked tops where all eigenphases are
equivalent with respect to level dynamics [1]. This sug-
gests the introduction of a local time 7={x, )A. If the
velocities are defined in terms of 7, the linear increase
shown in Fig. 2 cancels out, and level dynamics becomes
independent of energy. This fact is further corroborated
by the observed velocity distributions. Figures 4(a)-4(d)
show distribution histograms for different frequency
ranges. The distributions are normalized to a quadrati-
cally averaged velocity of 1. All histograms look identi-
cal within the limits of error. In Fig. 4(e) the velocity dis-
tribution histogram for all eigenenergies is shown. From
the Yukawa conjecture (5) a Gaussian, i.e., Maxwellian
velocity distribution is expected. The histogram, howev-

er, shows a distinct shoulder at positive velocities. This
behavior is easily correlated with the solitonlike struc-
tures [15] seen in Fig. 1, and their weak dependences on
the billiard length. If the spectrum is unfolded to con-
stant density, the bouncing ball eigenvalues experience
positive drift velocities giving rise to the observed asym-
metry. If the eigenvalues in these regions are omitted
from the histogram, good agreement with the Gaussian
prediction is found [Fig. 4(f)]. Analogous influences of the
bouncing ball orbit on nearest-neighbor spacing distribu-
tion are known from the stadium billiard [14,16].

This paper concentrated on the relations between level
dynamics and periodic orbit theory. We would like to
mention that beyond it the measurements allow tests of
random matrix predictions, e.g., on asymptotic curvature
distributions [17] or on distributions of closest approach
distances [18]. In all these cases random matrix theory
could completely account for the experimental results.
Details will be presented in a forthcoming paper.
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